Address Book
 

BALLUFF
 

Seica
 

PEI-Genesis
 

KEYENCE
 

CML Microcircuits
 

SAMTEC
 

ams-OSRAM
 

INTEL
 

TDK Corporation
 

Giada
 

RS group
 

NOKIA
 

ANRITSU
 

Digi-Key Electronics
 

AERS

29.03.2024 0:07:15
bloky
maketa
HomePage
Electronic-components
Embedded
Industry automation
Pneumatic
Test & measurement
Tools
Electromobility
Solar energy
Lighting
Jobs
Trade fairs, Events
Virtual events
Interesting video
Various

Access Point WBE750
 
NETGEAR Unveils the Ultimate Tri-band Wi
Intel Core 14th Gen i9
 
Intel Core 14th Gen i9-14900KS Powers De
DDRH-15/30/45/60
 
Mean Well’s DDRH Series Isolated Ultra-W
TimeProvider® 4500 Series
 
TimeProvider® 4500 Series Is the Industr
IAM-20381HT
 
TDK announces new 3-axis accelerometer,
Microchip’s 5071B
 
New Cesium Atomic Clock Provides Autonom
POLOLU-4980
 
MINIATURE STEP-UP/STEP-DOWN CONVERTERS F
MANSON SDP-2210
 
MANSON SDP-2210 PROGRAMMABLE LABORATORY
DPI 750E
 
RS Components adds range of enhanced pre
conga-TR4
 
AMD Ryzen™ based congatec COM Express mo

Microchip’s Low-Power Radiation-Tolerant (RT) PolarFire FPGA Enables High-Bandwidth Space Systems with Lower Total System Cost
Industry’s lowest-power FPGA enables high-throughput on-orbit processing systems that withstand radiation effects in space

Developers of spacecraft electronics use radiation-tolerant (RT) field programmable gate arrays (FPGAs) to create on-board systems that meet the demanding performance needs of future space missions, survive the brutal launch process and continue to operate reliably in the harsh environment of space. Extending its RT FPGA offering to bring these capabilities to emerging high-performance space applications, Microchip Technology Inc. (Nasdaq: MCHP) today introduced the RT PolarFire® FPGA that is optimized to meet the most demanding requirements in spacecraft payload systems’ high-speed data paths with the lowest possible power consumption and heat generation.

“We are supporting an evolving set of on-orbit space applications that need high levels of operating performance and density, low power consumption and minimal heat dissipation, while reducing system-level costs,” said Bruce Weyer, vice president of Microchip’s FPGA business unit. “Our RT PolarFire FPGA enables the major leap in computing throughput required for these applications including processing-intensive neural networks for object detection and recognition, high-resolution passive and active imaging, and high-precision remote scientific measurement, while maintaining a path to QML qualification.” 

A growing number of space applications need greater computational performance so they can transmit processed information rather than raw data and make optimal use of limited downlink bandwidth. The RT PolarFire FPGA enables this at significantly lower cost and with faster design cycles than possible with application-specific integrated circuits (ASICs). It also significantly reduces power as compared to the alternative of using FPGAs based on static random access memory (SRAM) while eliminating their vulnerability to radiation-induced configuration upsets. The RT PolarFire FPGA is supported by all necessary radiation data, specifications, package details and tools customers need to start new designs now, initially with the commercial version of the device.

The RT PolarFire FPGA builds on the success of Microchip’s RTG4 FPGA, which has been widely deployed in space applications that require its radiation-hardening by design against single event upsets (SEUs) and inherent immunity to single event latch-ups (SELs) and configuration upsets. For space applications that require up to five times the computing throughput, the RT PolarFire FPGA provides 50 percent more performance and triple the logic elements and serializer-deserializer (SERDES) bandwidth. It also provides six times the amount of embedded SRAM to enable more system complexity than previously possible using FPGAs and withstands total ionizing dose (TID) exposure beyond the 100 kilorads (kRads) that is typical of most earth-orbiting satellites and many deep-space missions.

The RT PolarFire FPGA cuts power consumption to approximately half that of alternative SRAM-based FPGAs with equivalent density and performance. Its SONOS non-volatile (NV) technology enables its configuration switches to be implemented in a more power-efficient architecture that cuts development and bill of materials costs through simplified, less expensive and lighter power system design while minimizing heat dissipation to reduce thermal management problems. Designs are further simplified as compared to using SRAM-based FPGAs because the RT PolarFire FPGA eliminates the cost, complexity and recovery downtime of mitigating configuration SEUs.

The RT PolarFire FPGA will undergo the standard process for meeting QML standards including class V qualification for highly critical applications. Microchip has lengthy experience achieving QML qualification for its RTG4 FPGAs and other products, which requires extensive and continuous testing including screening each wafer and package assembly lot.

Availability

Packaged in a hermetically sealed ceramic column grid array with integrated decoupling capacitors, Microchip’s RT PolarFire RTPF500T FPGA will be available and qualified for space-flight deployment in 2021. Customers can start designs now using the commercial PolarFire MPF500T FPGA with Microchip’s Libero® software tool suite that includes optional triple mode redundancy (TMR) synthesis support for implementing SEU mitigation where required, such as in control circuits. Development boards are available with the commercial PolarFire FPGA and will later include the RT PolarFire device in engineering model form. Available radiation data includes TID, SEL, configuration upsets, and upsets in unprotected D-flip flop (DFF) and memory.

For more information, visit RT PolarFire web site or contact sales.support@microsemi.com.

2019102401 / 28.10.2019 / Electronic-components / Microchip Technology Inc. /

Microchip Launches New dsPIC® DSC-Based Integrated Motor Drivers that Bring Controllers, Gate Drivers and Communications to a Single Device
A corresponding ecosystem of support tools will help simplify motor control system development and accelerate time to market

Microchip Expands its mSiC™ Solutions with the 3.3 kV XIFM Plug-and-Play mSiC Gate Driver to Accelerate the Adoption of High-Voltage SiC Power Modules
The highly integrated 3.3 kV XIFM plug-and-play digital gate driver is designed to work out-of-the-box with high-voltage SiC-based power modules to simplify and speed system integration

Microchip’s Low-Cost PolarFire® SoC Discovery Kit Makes RISC-V and FPGA Design More Accessible for a Wider Range of Embedded Engineers
Cost-sensitive development platform helps student, beginner and seasoned designers work with emerging technologies

TimeProvider® 4500 Series Is the Industry’s First Grandmaster to Provide High-Speed Network Interfaces up to 25 Gbps
Extends Microchip’s IEEE®-1588 grandmaster portfolio and enables precise time accuracy to less than one nanosecond

Microchip Earns Certification in ISO/SAE 21434 Road Vehicle—Cybersecurity Engineering Standard from UL Solutions
Designing with certified security products can help Tier 1s and OEMs prove cybersecurity risk management compliance

The Next Evolutionary Step in Customizable Logic, Microchip Releases PIC16F13145 Family of MCUs
New Configurable Logic Block (CLB) module offers tailored hardware solutions and helps eliminate the need for external logic components

Microchip Launches 10 Multi-Channel Remote Temperature Sensors
MCP998x family represents one of the largest automotive-grade remote temperature sensor portfolios available from a single vendor

Next-Generation Family of Ethernet Switches Features Time Sensitive Networking and Scalable Port Bandwidths from 46 Gbps to 102 Gbps
Microchip’s LAN9694, LAN9696 and LAN9698 devices are integrated with High-availability Seamless Redundancy (HSR) and Parallel Redundancy Protocol (PRP) for ease of design

Microchip Launches AVR® EB Family of Microcontrollers to Reduce Noise, Vibration and System Harshness in BLDC Applications
Offers a smaller, more cost-effective solution for sophisticated waveform control with increased efficiency

Automate Installation Process with Press-Fit Terminal Power Modules for a Solder-Free Solution in High-Volume Manufacturing
Microchip’s SP1F and SP3F power modules are highly configurable in Silicon Carbide (SiC) or Silicon (Si) technology and now available with Press-Fit terminals

Microchip Unveils New Standard of Enhanced Code Security With the PIC18-Q24 Family of MCUs
Added voltage level shifting capabilities help increase flexibility and reduce system costs

To Meet And Exceed Heightened Automotive Secure Authentication Requirements, Microchip Releases Its Latest TrustAnchor Security IC
Available as a CryptoAuthentication™ or CryptoAutomotive™ Secure IC, the new TA101 device focuses on larger key sizes and enhanced cybersecurity requirements

Company of the week

BALLUFF

Interesting video


GAMING, COMPUTER ACCESSORIES AND OTHER RELATED PRODUCTS


New video for Pilot VX


electronica 2024, 12.11.-15.11.2024, Munich, DE


Video Report from AMPER 2022


INDUSTRIAL PRESSURE TRANSDUCERS FROM CYNERGY3


Address Book


BALLUFF


Seica


PEI-Genesis


KEYENCE


CML Microcircuits


SAMTEC


ams-OSRAM


INTEL


TDK Corporation


Giada


RS group


NOKIA


ANRITSU


Digi-Key Electronics


AERS


Flex Power Modules


Danisense


BINDER


Parker Hannifin


MOXA


DANFOSS


Alliance Memory


Intelliconnect (Europe) Ltd.


KIOXIA Europe GmbH


Antenova Ltd


Friedrich Lütze GmbH


Analog Devices


ASRock Industrial


NVIDIA


Yamaichi Electronics USA Inc.



Calendary
SENSOR+TEST 2024, 11.-13.6.2024, Nuremberg, DE
electronica 2024, 12.11.-15.11.2024, Munich, DE
DistribuTECH, 11.2.-13.2.2025, Dallas, TX

Interesting video
The ISS Design Challenge ...

Interesting video
Mouser Electronics Warehouse Tour with Grant Imahara


naše portály dle jazyka:

česko/slovenská jazyková verze:
WWW.ELEKTRONIKA.CZ
WWW.ELEKTRONIK-INFO.CZ

anglická jazyková verze:
WWW.ELECTRONICA.ONLINE
WWW.ELECTRONIC-INFO.EU
WWW.COMPONENTS.ONLINE

polská jazyková verze:
WWW.ELEKTRONIKA.ONLINE/pl
WWW.ELEKTRONIK-INFO.PL

ruská jazyková verze:
WWW.ELEKTRONIKA.ONLINE/ru
WWW.ELEKTRONIK-INFO.RU
naše portály dle zaměření:

ELEKTRONIKA.ONLINE :
WWW.ELECTRONICA.ONLINE
WWW.ELEKTRONIKA.CZ
WWW.ELEKTRONIKA.ONLINE/pl
WWW.ELEKTRONIKA.ONLINE/ru

ELEKTRONIK-INFO:
WWW.ELECTRONIC-INFO.EU
WWW.ELEKTRONIK-INFO.CZ
WWW.ELEKTRONIK-INFO.PL
WWW.ELEKTRONIK-INFO.RU

COMPONENTS:
WWW.COMPONENTS.ONLINE
  kontakt:

MALUTKI media s.r.o.
Těrlická 475/22
735 35 Horní Suchá
tel. 00420-603531605
e-mail: info@malutki-media.com



All trademarks are the property of their respective owners.
ISSN 1801-3813